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From the equation to the system.

Consider a scalar linear equation of the second order:
'+ Py + Qy =0, P,Q are rational. (1)

We can rewrite it as a first-order system:

(2) (% ) (¥)

Classical results tell us that if the scalar equation (1) is
Fichsian, there is such a polynomial gauge transformation

(1, )T — g(2)(1,¢')T =: ¢ that the resulting system

ﬁ, . R T
v =A2)¢, Azg(_o _P)g‘+gg‘

becomes Fuchsian, i.e. A(Z)dz has only simple poles on C.
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From the system to the equation.

If we start from the system J/ = A(Z)@Z, we can exclude the
second component of ¢ = (1, 1)7 using ¢" = (A" + A%)ip.
The result is the scalar equation " + Py’ + Q) = 0, where

P = —log Az —trA, Q =detA— A}, + Aj1log’ Asz.

How to restore the Fuchsian system if the
scalar equation is a Heun equation
(Fuchsian eqn. with four singular points)?
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Characteristic exponents.

The roots p12 = p12(2k) of the quadratic equation
p(p—1)+pRes|,—z; P+Res|,—; ((z—2)Q) =0,k =1,2,3.

are called characteristic exponents at zx. They are
connected with the eigenvalues ©), O of the residues AK)

(k)
of A(z) = 32, A4
{p1ap2} = {e;ﬁ@k + Sk + 1}a

where Sk is an order of Aq2(2) at Zx: A12(2) ~ (Z2 — zk)*~.
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S-homothopic transformations.

The transformation ¢ — [[o_,(Z — k)™, 3", ak = —aree
shifts the exponents and eigenvalues:

{@;(, @k} — {@;( + ak, Ok + Oék},

so we can put O, =0, k = 1,2, 3. In this case the formulas
become simpler, and the matrices-residues A% for the
system corresponding Heun equation

(D Lov+ 1@ it (abz-w=0.  (2)
o(@)=1[z-2). 2)=>(1-0)(2). =02)/(z2)
j=1 j=1

can be calculated straightforwardly:
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Degenerated residues: det A%) = 0, k=1,2,3.

hi=\/t(t—1)
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Quotion with respect to GL(2, C).

The equivalent sets {AK)} ~ {g=TAK g}, g € GL(2) have
unique representative such that

e, x * —1 e, 0
(1) — 1 (2) — (3) _ 3
A _(0 @1)’A _(* *)’A _(* @3)'

If the eigenvalues are given, all the matrix elements of these
matrices are defined by A(>®) = — >k A and there are no
restrictions on A(%).

All other scalar equations from the class form
one-parametric set sweeped out by the action of

;
P ( 0 7)’ [A1} — {g,"A¥gp}.

The enumeration of Fuchsian singularities leads to the
enumeration of A,
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Discrimination of the equations without

apparent singulaties.

The formulae
P=—log' Az —trA, Q=detA— A\, + A1 log’ Az

show that P, Q have singularities at the zeros of Ajz. These
are the apparent singularities. Heun equation has just four
singularities at Zx, and has no apparent singularities. It
implies the coinciding both zeros of Ajodz with some Zz.

Two residues, say A®) A(>®) are lower-triangular. It gives
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The normalized set of A% for Heun equation.

A0 (O 1Y qo_( ©+6s 1
0 o) Os(05 +0}) ©,— 05 )’

A _ (€ 0\ a0 o, 0
h 0 ) —(05(0x +©4)+h) ©4 )

O/ =0;-06), 05 = 2?21 ©j, h € C is unique parameter,
it is the accessory parameter. This normalization is more
suitable compared with the conventional condition in
isomonodromic property demanding diagonal A>.
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Heun equation for the case tr AK) = 0.

Formulae for the coefficients become simpler if we set
©4+0 =0,z1=0,2=1,2z3 = t, z4 = 00, namely

" 1 1 , h ~ B
4 +(E+z—1)w Jr(z(z—1)(z—t‘)+Q)¢_O’

where
ol 03(2(02 —O5) —1) ©5(204 —1)
T (z=ND(=z-t  (z-bz
20,0, — (2@2 + 1)(@1 + @2) —+ @z(@z —+ 1)
B z(z-1) a

o3 05  93(03+1)

2 (z—1)2 (z—-1)?
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Constant monodromy, Schlesinger system:.

A familly of the differential systems dW = A(z; t)dzV¥, has

a fixed monodromy iff there is such 1-form B(z, t)dt that

Adz + Bdt is flat. L. Schlesinger introduced an ansatz
de

A(z; t)dz + B(z, t)dt = ZA(" — =,
k

A(k) = A(k)(t), Zx = Zk(t).

The flatness condition dw = w A w is equivalent to the
dynamical system dA®) + [AF) 3, % dzk dz’] =0.Itis
Hamiltonian on the Poisson space gl"”(n C) of the sets of
matrices {AK)} € giM(n, C), a Hamiltonian form is

h= z,JtrA(f)AU)dj;%jff.
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Normalized set of four matrices

The eigenvalues of A% are defined by the monodromy. The
representative of the equivalence class of {A®)} is:

A(n:( o) - pq q )A(Z):(eg 1—q>
—p(pg —©7+04) ©1+pqg )’ 0 O

©; 0 -y 1
AB®) _ < 3 ) A4 _ ( 1" )
a2y oz )’ —T1Xop +040s X )’

where 211, 220 are the sums of the corresponding matrix
elements:

211 = —pq—i— @/1 + 6,2 + 95,222 = ,Oq+ @1 + 62 + @3,
asy) = p(pg—©4+01)—(pg—Y _ ©/+0,)(pg+> _ ©,—04)—6,6s.
J J
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Painlevé VI system.

The variables p, g are canonical on the symplectic quotient
O x 0@ x OB) x 0(4)//GL(2).
Let zy =0,z =1,2z3 = t,24 = oo. Then the Hamiltonian is

tr A At AG) AR) 1
H = - A®((t—1) AN 1-tA@) —
R =1y (E=1)AT+A™)

_q@-Na-t (. (O, 6 ©3 S
o H(t—1) P=Plgtqg-1"q9-1))"
O5(O5 — 204)

+q

4t(t—1)

Where “%” does not influence the Hamiltonian equations.
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Antiquantization.

Let us consider Heun equation with such normalization
P(Z) = [1x(Zz — zk)**1)(z) that one of two characteristical
exponents at each finite point vanish:

3 3

[z [ 02e+ |3 122 be | +asz—t(t-1)nw =0,

j=1 j=1 !

and compare it with the Hamiltonian system Painlevé VI:

dp A dg—

3 3 o " at
o >, 2 J
d j]}(q z)|p ;q_zj P +64q | gy
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Conclusion:

S. Yu. Slavyanov observed that the formal substitution

(0=2.2)~p.0)

transforms the polynomial form of Heun equation with
three zero charachteristical exponents into the Hamiltonian
of the isomonodromic deformation of the Fuchsian system
in the canonical variables.

He called it “the antiquantization”. He treated h as energy
and the location of the movable singularity as time.
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The End.

Thank You!:)

Babich,




